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Abstract. The correlation power attack [4] is a widespread attack used
to recover secret data based on leakages of a device. An enhancement of
this method was proposed in [5] which improves the CPA by restricting
normalization factor. But these attacks only focus on the linear rela-
tionship between the leakages and the hamming distance model. In this
article, we propose a generalization of the correlation attack which does
not restrict on the linearity but also takes into account the non linear
relationships. Our attack uses the theory of nonparametric statistics [10]
which enables us to solve estimation problems.
Keywords: CPA, DPA, Side Channel Attacks, Power Analyis, Mutual
Information, Non parametric Statistics

1 Introduction

Most smart card components are based on the CMOS logic. The power
consumption characteristics of CMOS circuits can be summarized shortly
as follows. Whenever a circuit is clocked, the circuits gates change their
states simultaneously. This leads to a charging and discharging of the in-
ternal capacitors and this in turn results in a current flow which is mea-
surable at the outside of the device. Such measurements can be conducted
easily. One needs either a data acquisition card or a digital oscilloscope
to acquire the measurements. The current flow can be measured directly
with a current probe, or by putting a small resistor in series with the
ground input or power input of the device. By using statistical properties
and leaked data from devices, Kocher, Jaffe and Jun [6] were able to re-
cover secret keys which were believed to be sealed in a secure environment.
They named their attack DPA which is an acronym for Differential Power
Analysis. Since that moment, numerous countermeasures have been in-
vented and the attacks also have been improved. The Correlation power
analysis attack [4] which can be viewed as a multi-bit DPA method fo-
cuses on the linear relationship between the consumption curves and the
hamming weight model. Experiments [4] show that this attack can not



work on all the components. That’s why we are interested in non linear
relationship between the consumption power leakages and the hamming
weight that should give better results when you process them by using
another statistical tool based on the notion of Mutual Information (noted
MI in the following ). We do not investigate in this article the copula func-
tions [11] which can also capture non linear relationships among variables.
But this should be done in the future. The model which is commonly used
to describe the power consumption in a smart card is the following:
Let’s R be a buffer (for example of 8 bits) with an assigned value a and
let’s b be the result in that buffer after a computation. The power con-
sumption used to pass from the value a to the value b in the buffer R can
be represented by the following model:

C(t)(a,b) = λHW (a⊕ b) + βt

where HW is a hamming weight function, λ is the power consumption
used to switch a bit from 0 to 1 as from 1 to 0 and βt is a white noise (its
distribution follows a normal law N(0, 1)).

This model is used to perform a CPA attack. But in order to obtain
better results two ways can be investigate :

– either you modify the model and you apply the CPA with this new
model (because the relationship between the leakages and the model
would be linear). In this case the consumption must be represented
as follows C(t)(a,b) = F (a, b) where F is a function to make explicit.

– either you do not search to explicit F and in that case you must use
statistical tools which are able to quantify both linear and non linear
relationships in order to recover secret data

In this article we will focus on the second strategy; in the next section
we will briefly make a review on the notion of Mutual Information and
we will develop the tools needed to set up the Generalized Correlation
Power Analysis.
Notation:
Let Ci, be a power curve. We can represent Ci by the vector [Ci(1)....Ci(T )]
where T is the sampling rate.
pdf : probability density function.

2 Mutual Information

Mutual Information (MI) is a measure of general dependance (both linear
and non linear) between random variables X and Y . This concept was



developed in communication theory and cross domains. Considering two
random variables X and Y , the MI, denoted by I(X, Y ), is defined as

I(X, Y ) = H(Y )−H(Y |X) = H(X) + H(Y )−H(X, Y ),

where H(X) or H(Y ) is the marginal information entropy which mea-
sures the information content in a signal and H(X, Y ) is the joint infor-
mation entropy which measures the information content in a joint system
X and Y . The MI between two random variables X and Y can also be
defined as :

I(X, Y ) =
∫

Y

∫
X

ρXY (x, y)log
ρXY (x, y)

ρX(x)ρY (y)
dxdy

where ρXY (x, y) is the joint probability density function (pdf ) be-
tween X and Y , and ρX(x) and ρY (y) are the marginal pdfs.
A comparison of MI based dependence with traditional measures of de-
pendence, such as Pearson linear correlation coefficient, Spearman rank
order correlation and Kendall’s tau is done in [7]. MI seems to be a good
tool for recovering secret information as it provides information about
both linear and non linear dependencies between two sets of data.

3 The Linear Correlation Coefficient and the Mutual
Information based non linear Correlation Coefficient

In this section we remind the basis of the CPA; this attack uses an es-
timator of the Pearson linear correlation coefficient, r, defined as follows
for two random variables X and Y :

r(X, Y ) =
cov(X, Y )

σXσY
=

E(XY )− E(X)E(Y )
E((X −m1)2)E((Y −m2)2)

The Pearson correlation coefficient can take values from −1 to +1. A
value of +1 shows that the variables are perfectly linear related by an in-
creasing relationship, a value of −1 shows that the variables are perfectly
linear related by a decreasing relationship, and a value of 0 shows that
the variables are not linear related by each other. There is considered a
strong correlation if the correlation coefficient is greater than 0.8 and a



weak correlation if the correlation coefficient is less than 0.5. When you
look at the result of the CPA made in [4] on a 32 bit implementation of
a DES algorithm, the correlation rate is not high on boxes 5 to 8 (it is
around 0.5). The justification of the authors for this bad result is because
of partial and imperfect modelling. To overcome this problem, we must
look at non linear relationship between the leakages and the hamming
distance model. To do that we will use the Granger coefficient which is a
stronger tool than the Pearson linear correlation coefficient. Indeed while
the correlation coefficient quantifies the dependance purely in terms of
the linear information content, the Granger coefficient, λ, quantifies the
complete (linear and non linear) information content. It is defined as fol-
lows:

λ(X, Y ) =
√

1− exp(−2 ∗ I(X, Y ))

Remark that λ ranges from 0 to 1; for the Generalized Correlation
attack we must estimate that coefficient in the following way

λ̂(X, Y ) =
√

1− exp(−2 ∗ Î(X, Y ))

where Î(X, Y ) is the estimated MI between X and Y.
Henceforth in order to compute this coefficient, we must use a good esti-
mator of the mutual information. The next section focuses on this subject.

4 The MI estimation methods

The estimation of the MI is not an easy problem : it requires the estima-
tion of the joint and marginal pdf ; the most widespread technique is to
approximate the MI integral by binning the coordinate axes and counting
the number of data points per bin, which is computationally intensive and
prone to systematic errors. Indeed histograms are not the good tool for
the estimation in our problematic; histograms are not smooth, depend on
the width of the bins and the end points of the bins.
To overcome these problems several methodologies have been explored
such as

– Kernel density estimators (KDE) [1]
– k-nearest neighbors (KNN) [2]
– Edgeworth approximation of differential entropy [3]
– Wavelet based density estimation



– Finite mixtures

We will describe some of these methods in our problematic; further
work must be done in order to classify these methods.
The estimation of the MI is the following: Let X be the random variable
Ĉ(t) (the consumption at time t). Let Y be HW (M̂ ⊕ Kj) where M̂ is
a random variable controlled by the attacker (the messages). It mustn’t
follow a uniform law otherwise we can’t extract information on Kj . Hence
in the general case we have:

Î(X, Y ) =
∫ +∞

−∞

8∑
i=0

ρ̂X,Y (x, i)log
ρ̂X,Y (x, i)

ρ̂X(x)ρ̂Y (i)
dx (1)

where ρ̂XY (x, i) is the estimated joint pdf, and ρ̂X(x) and ρ̂Y (i) are the
estimated marginal pdfs at (x, i). Hence the MI estimates are obtained
by first estimating the different pdfs.
In order to force the structure and the shape of the pdf, we use specific
messages; for a supposition Kj , you must make N

2 acquisitions by sending
the message M1 such that HW (M1 ⊕Kj) = 0 and make N

2 acquisitions
by sending the message M2 such that HW (M2 ⊕Kj) = 8. Obviously the
drawback of this method is that you need to perform N ∗ 2s acquisitions
where s is the size of Kj in bits. Now Equation (1) becomes (in the case
of the good guessing of the key):

Î(X, Y ) =
∫ +∞

−∞
(ρ̂X,Y (x, 0)log

ρ̂X,Y (x, 0)
ρ̂X(x)1

2

+ ρ̂X,Y (x, 8)log
ρ̂X,Y (x, 8)
ρ̂X(x)1

2

)dx

At each time t, you must compute this value of Î(X, Y ); when the
good guessing on the key will be done, the estimated MI will be maximal
at the time t0 when the key is manipulated (Meaning that a relation either
linear or not exists between the consumption and the hamming weight
model)

4.1 Kernel Density Estimator

Kernel density estimation (or Parzen window method, named after Emanuel
Parzen) is a way of estimating the probability density function of a ran-
dom variable. In our case we don’t need to estimate the pdf of the variable
Y which is the hamming weight of the xor operation between the guessed
key and part of the message. But the pdf of the variable X and the joint
distribution must be estimated : as we get the power curves Ci (a sample



of a random variable) then the kernel density approximation of its density
function at time t is:

ρ̂X(x) =
1

Nh

N∑
i=1

G1

(
x− Ci(t)

h

)
where G1 is some kernel function (see annex A), h is a bandwith

(smoothing parameter).
The kernel density estimation of the joint pdf is given by:

ρ̂X,Y (x, y) =
1

Nhxhy

N∑
i=1

G2

(
x− Ci(t)

hx
,
y − yi

hy

)
where hx and hy are the smoothing parameters and yi hamming weight
equals to 0 or 8 (depending of the sample) and G2 is a kernel function
with 2 parameters (see annex A).

Notice that when h, hx, hy are small, we get a lot of noise or spuri-
ous structure in the estimate. On the other side, when these elements
are larger, we get a smoother estimate, but there is the possibility that
we might obscure bumps or other interesting structure in the estimate.
In practice, it is recommended that the analyst examines kernel density
estimates for different window widths to explore the data and to search
for structures such as nodes or bumps.
The method used to choose the optimal bandwidth is to minimise the
optimality criterion AMISE (Asymptotic Mean Integrated Squared Er-
ror). In general, the AMISE still depends of the true density (which of
course we don’t have) and so we need to estimate the AMISE from our
data as well. This means that the chosen bandwidth is an estimate of an
asymptotic approximation.

4.2 Nearest Neighbor Method

The basic idea of this method is to control the degree of smoothing in the
density estimate based on the size of a box required to contain a given
number of observations. The size of the box is controlled by using an
integer k that is smaller than the sample size (a typical choice would be
k ≈ N

1
2 ). Suppose we have the ordered data sample (x(1), ..., x(N))). For

any point x on the line we define the distance between x and the points
on the sample by

di(x) = |xi − x|



so that
d1(x) ≤ d2(x) ≤ ... ≤ dN (x)

Then the kth nearest neighbor density estimation is defined as follows :

ρ̂X(x) =
k − 1

2 ∗N ∗ dk(x)

The problem with this estimator is that the integral of p̂X(x) is infinite;
but this can be fixed by using the generalized kth nearest neighbor density
estimate:

ρ̂X(x) =
1

N ∗ dk(x)

N∑
k=1

G1(
x− Ck(t)

dk(x)
)

In fact this is just a kernel estimate evaluated at x with window width
dk(t). Overall smoothing is controlled by choice of k, with the window
width at any specific point depending on the density of points surrounding
it. However, the main drawback of this method is the high computational
cost associated with the search for the nearest neighbors.

4.3 Edgeworth Approximation

In [3] an estimation of the mutual information based on Edgeworth ap-
proximation is introduced; it seems that this method can be more accurate
than the nearest neighbor method; more studies on this topic should be
conducted.

4.4 Wavelet based density estimation

In statistics, amongst other applications, wavelets [9] have been used to
build suitable non parametric density estimators.What do wavelet es-
timators have to offer in comparison with more classical estimators of
the same type? A major drawback of classical series estimators is that
they appear to be poor in estimating local properties of the density. This
is due to the fact that orthogonal systems, like the Fourier one, have
poor time/frequency localization properties. On the contrary, as previ-
ously pointed out, wavelets are localized both in time and in frequency.
This makes wavelet estimators well able to capture local features. Indeed
recently it has been shown that kernel density estimations tend to be in-
ferior to wavelet-based density estimates [8]. Ideas of [13] can be adapted
to our problematic.

Those previous methods require a choice of a smoothing parameter
(h,..); it influences the estimated pdf. It would be better to avoid choosing



such parameter. The finite mixture method could be a good solution to
avoid this problem. Instead of determining the smoothing parameter, we
must determine the number of terms in the mixture which could be done
easily as we will see.

4.5 Finite mixtures

The finite mixture methods assumes the density ρ(x) (which is either
ρX(x) or ρX,Y (x, y)) can be modeled as the sum of c weighted densities,
with c << n (where n is the size of the sample). The most general case
for the univariate finite mixture is

ρ(x) =
c∑

i=1

pig(x; θi)

where pi represents the weight or mixing coefficients for the i-th term,
and g(x; θi) denotes the gaussian probability density function, with pa-
rameters represented by the vector θi = (µi, σi).To make sure that is a
bona fide density, we must impose the condition p1+..+pc = 1 and pi > 0.
To evaluate ρ(x), we take our point x, find the value of the component
densities g(x, θi) at that point and take the weighted sum of these values.
The number of components c acts something like a smoothing parameter.
Smaller numbers of components will behave more like parametric models
and can lead to specification bias. Greater flexibility can be obtained by
letting the number of components grow, although too many components
can lead to overfitting and excessive variation.
The major interest of the Gaussian mixture is its capacity to produce a
quick and useful approximation to a multi-modal histogram. Indeed an
efficient algorithm called the Expectation Maximization (EM) algorithm
allows us to estimate the unknown parameters θ1, .., θc, p1, .., pc. Remark
that the use of the EM algorithm requires that the number of compo-
nents c in the mixture is available. Nevertheless you can overcome this
problem by making a guess on c, then execute the EM algorithm and at
last perform a Kolmogorov Smirnov test (KS test) in order to validate
the guessing on c. Remark that in [12], an extended KS test is proposed
to determine the number of components in a mixture model: an approach
based on the EM procedure is constructed by the extended KS test in
parallel to do the computation. This method seems to be more efficient.



4.6 Application on the attacks

Now that we are able to compute efficiently pdfs, we will focus on how
to perform an attack. Remind that in the case of the CPA, the following
estimator is used :

r̂Kj (t) =
N

∑N
k=1 Ck(t)HW (Mk ⊕Kj)−

∑N
k=1 Ck(t)

∑N
k=1 HW (Mk ⊕Kj)√

N
∑N

k=1(Ck(t)− Ck(t))2
√

N
∑N

k=1(HW (Mk ⊕Kj)−HW (Mk ⊕Kj))2

At each time t, an attacker computes for all the values Ki this esti-
mator and the more the correlation is, the better the hypothesis made on
the secret key is at the time when the real key is manipulated.

In the case of the Generalized Correlation Power Analysis (GCPA),
the following estimator is used :

λ̂Kj (t) =
√

1− exp(−2Î(Ĉ(t),HW (M̂ ⊕Kj)))

where Î(X, Y ) is the estimated MI between X and Y computed by one
of the method described in the section 4 and Ĉ(t) is a random variable
for which we have a sample of size N ∗2s at each time (i.e N consumption
curves for each guessed key).
At each time t, an attacker computes for all the values Kj this estimator
and the closer to one the coefficient is, the better the hypothesis made on
the secret key is at the time when the real key is manipulated.
Remind that for this attack you mustn’t use random messages, you must
use chosen messages in order to have characteristic pdf as described in
the beginning of section 4.

5 Conclusion

The GCPA is a new attack which takes into account both the linear and
non linear relationship between the leakages and the hamming weight
model. But in order to validate this new attack and compare it with
the CPA (for the number of curve needed and the computation timings;
obviously the GCPA will be much more time consuming compared to
the CPA), an attack must be conducted with real data. Moreover the
choice of the method used to estimate the MI will influence the results
of this experiment. Another research topics would be (if the result of the



GCPA are good) to develop a new power consumption model in order to
apply a classical CPA (as the relation between the new model and the
consumption would be linear). At last it would be interesting to use the
copula methods in order to define a new attack.
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6 Annex A

The kernel function G is usually chosen to be a smooth unimodal function
with a peak at 0. Even though Gaussian kernels are the most often used,
there are various choices among kernels as shown in the table below.



Kernel K(u)
Uniform 1

2I(u)
Triangle (1− |u|)I(u)

Epanechnikov 3
4(1− u2)I(u)

Quartic 15
16(1− u2)2I(u)

Triweight 35
32(1− u2)3I(u)

Tricube 70
81(1− |u|3)3I(u)

Gaussian 1√
2π

exp(−1
2u2)

Cosinus π
4 cos(π

2 u)I(u)

where the function I is defined as : I(x) = 1 if |x| ≤ 1 else I(x) = 0
The quality of a kernel estimate depends less on the shape of the G

than on the value of its bandwidth h. It’s important to choose the most
appropriate bandwidth as a value that is too small or too large is not use-
ful. Small values of h lead to very spiky estimates (not much smoothing)
while larger h values lead to oversmoothing.

Remarks
The choice of the function G weights more or less some points.
A kernel function with 2 parameters means that the vector u is of di-
mension 2 hence the previous function can be adapted to multivariate
inputs.


